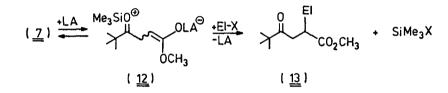

RING CLEAVING SELENENYLATION AND SULFENYLATION OF CYCLOPROPANE DERIVATIVES PROMOTED BY TICIA

Hans-Ulrich Reissig* and Ingrid Reichelt Institut für Organische Chemie der Universität Würzburg Am Hubland, D-8700 Würzburg, Germany

Summary: A synthesis of 2-selenenyl and sulfenyl 4-oxoesters based on Lewis acid promoted activation of methyl 2-trimethylsiloxy cyclopropanecarboxylates is reported. A mechanistic scheme for this new C-Se and C-S forming reaction is disclosed.

Ring cleavage of cyclopropanes by electrophilic reagents has received remarkable interest 1 . However, no attention has been given to the reactions of simple cyclopropane derivatives 2 with selenenyl or sulfenyl halides 3 although the ring opened products might be of considerable synthetic value 4 .

We recently found that the vicinal acceptor-donor substituted cyclopropane $(\underline{1})^{5}$ reacts rather slowly with phenylselenenyl chloride $(\underline{2})$ affording $(\underline{3})^{6}$ in good yield. According to ¹H NMR control conversion of $(\underline{1})$ into $(\underline{3})$ is complete after 24 h at 25°C and Me₃SiCl is deliberated as second product. However, adding a catalytic amount of TiCl₄ (0.04 eq.) to a mixture of $(\underline{1})$ and $(\underline{2})$ in CH₂Cl₂ at -78°C causes an instantaneous exothermic reaction (colour change) and allows isolation of $(\underline{3})$ in 69 % after warm up to room temperature. Scheme I:



Similarly cyclopropanes $(\frac{5}{2})$, $(\frac{7}{2})$ and $(\frac{10}{2})^{5}$ are transformed into selenenyl esters $(\frac{6}{2})$, $(\frac{8}{2})$ and $(\frac{11}{2})$ in high yields (scheme I). Compounds like $(\frac{11}{2})$ might serve as precursors for α -methylene χ -butyrolactones ^{4a}.

Whereas $(\underline{1})$ is not transformed by sulfenyl chloride $(\underline{4})^7$ to the analogous sulfenyl ester with or without TiCl₄ promotion, a clean conversion of $(\underline{7})$ into $(\underline{9})^8$ can be observed after addition of a catalytic amount of TiCl₄.

A mechanistic rationalization of this new method for C-Se and C-S bond formation is suggested in scheme II: ring opening of $(\underline{7})$ by the Lewis acid LA to a ketene acetal $(\underline{12})$, followed by the attack of an electrophile El-X to this moiety and extrusion of LA delivers 2-substituted 4-oxoesters $(\underline{13})$. Without electrophile this type of cyclopropanes undergoes Lewis acid induced cis-trans equilibration ⁹.

Scheme II:

We propose that according to scheme II other electrophiles El-X will provide a variety of synthetically useful functionalized 4-oxoesters of type $(\underline{13})^{10}$. This aspect as well as chemoselectivity and stereoselectivity of these reactions will be reported in due time ¹¹.

References and Notes

- 1. Review: C. H. DePuy, Topics in Current Chemistry 1973, 40, 74.
- P. L. Beaulieu, V. M. Morisset, D. G. Garratt, <u>Can. J. Chem. 1980</u>, <u>58</u>, 1005; P. L. Beaulieu, A. Kabo, D. G. Garrat, <u>Can. J. Chem. 1980</u>, <u>58</u>, 1014 and literature cited therein.
- Review concerning addition reactions to alkenes: G. H. Schmid, D. G. Garrat, "The Chemistry of Double Bounded Functional Groups", S. Patai, Ed., Wiley: London, 1977, p. 828 and 855.
- a) H. J. Reich, Acc. Chem. Res. <u>1979</u>, <u>12</u>, 22. b) B. M. Trost, Acc. Chem. Res. <u>1978</u>, <u>11</u>, 453.
- 5. E. Kunkel, I. Reichelt, H.-U. Reissig, Liebigs Ann. Chem. <u>1984</u>, 512; I. Reichelt, H.-U. Reissig, Liebigs Ann. Chem. <u>1984</u>, 536.
- 6. ^IH-NMR (CDCl₃): δ=9.63 (s,1H), 7.8-7.1 (m,5H), 3.70 (s,1H), 3.59 (s,3H), 1.27 (s,9H).
- 7. Usually sulfenyl halides are less reactive than selenenyl halides; compare ref. 3.
- 8. ¹H NMR (CDCl₃): **S**=8.5-7.2 (m,4H), 3.39, 3.04 and 4.41 (ABX-system, \underline{J}_{AB} =18 Hz, \underline{J}_{AX} =9.2 Hz, \underline{J}_{RX} =5.8 Hz,3H), 3.73 (s,3H), 1.23 (s,9H).
- 9. H.-U. Reissig, I. Böhm, Tetrahedron Lett. 1983, 24, 715.
- 10. Lewis acid promoted hydroxyalkylation: H.-U. Reissig, Tetrahedron Lett. 1981, 22, 2981.
- 11. Support of this work by the Deutsche Forschungsgemeinschaft is gratefully appreciated.

(Received in Germany 6 September 1984)